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Abstract—Insider threats are a costly and dangerous problem 
for government and non-government organizations alike. 
Considering an insider’s inherently privileged level of access on a 
network, the main principle of network defense—keep potential 
threats and outsiders out—does not apply to insider threats. 
Current defenses are largely based on the detection of insider 
threat indicators which are often manually compiled from past 
events. This approach is limited in scalability, has difficulty 
generalizing to new threats, and fails to consider the wide range of 
behaviors within an organization. In this work, we describe a 
system that detects potential insider threats through the 
characterization of temporal behavior on a network. Our 
approach is completely unsupervised, based on the assumption 
that there are many different behavioral norms within a network. 
After testing the system on an operational network with over 8,000 
hosts, we show through a series of case studies that the approach 
is effective in detecting behavioral anomalies suitable for follow up 
by a human analyst. 
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I. INTRODUCTION 
Insider threats are a costly and dangerous problem for 

government and non-government organizations alike. Modern 
organizations rely on oftentimes vast and spanning information 
networks to share mission critical information and conduct daily 
operations. Information networks are trusted to store sensitive, 
proprietary, and classified information, the unauthorized 
disclosure of which can lead to immensely expensive or even 
deadly consequences. With insider threats on the rise at the 
national level, information technology (IT) personnel find 
themselves at the forefront of a struggle to protect digital assets.  

Considering an insider’s inherently privileged level of 
access to an information network, the main principle of network 
defense—keep potential threats and outsiders out—does not 
apply to insider threats. Typical active defenses against insider 
threats include crude tripwires which rely on up-to-date insider 
threat indicators. While not without merit, these defenses can be 
easily avoided by a determined insider. Furthermore, recent and 
publicly available information on insider threats is scarce. 
Notwithstanding, insider threat activities are innumerable:   they 
are as diverse as human behavior itself. 

We describe and test a system that extracts network host and 
organizational behavior from network traffic and detects 
behavioral anomalies using unsupervised machine learning 
techniques for the purpose of insider threat detection. The 
system is developed and tested on an operational network with 
over 8,000 daily active hosts over a consecutive 6-day period. 

The system takes into account the temporal behavior of each 
host on the network, capturing both circadian and packet inter-
arrival characteristics. Under the assumption that there are a 
variety of behavioral norms within a network, we form clusters 
based on similarity among the hosts’ temporal behaviors. 
Anomalous hosts are then detected based on two different 
metrics that capture the level of conformity with one of the 
clusters and movement between clusters over the course of 
observation. Through a series of case studies, we demonstrate 
that the system is able to effectively detect behavioral anomalies.  

II. BACKGROUND 
Anomaly detection for the purpose of cybersecurity has been 

thoroughly studied for over 30 years, dating back to Denning’s 
statistical model for detecting network intrusions in 1987 [1]. 
Anomaly detection systems used for the purpose of detecting 
malicious network activity rely on having an accurate view of 
normal network activity in order to recognize and flag abnormal 
network activity [2]. Anomaly detection systems assume that 
malicious network activity has fundamentally abnormal 
characteristics not shared by normal or benign network traffic. 
Moreover, anomaly detection systems assume these inherent 
(and oftentimes unknown) abnormal characteristics or attributes 
can never be fully hidden or obfuscated despite an adversary’s 
best attempts to do so.  

Non-threatening insiders conform to an “organizational 
design” where they can be expected to behave in accordance 
with their organization’s rules, social norms, and patterns. For 
this reason, experts agree that anomaly detection is an important 
factor in detecting insider threat activity [3]. Researchers have 
sought to tailor and operationalize anomaly detection systems to 
discover insider threat activity on computer networks. These 
detectors typically develop an understanding of normal host or 
organizational network activity and use this baseline to flag 
deviations from the baseline.  

As pointed out by Sommers and Paxton in [2], anomaly 
detection systems typically generate a high number of false 
positives because they assume every deviation from normal is 
malicious and discount contextual factors that could describe 
these deviations as benign. Detection systems should seek to 
automate the process of finding insider threats to the furthest 
extent possible, thereby reducing the burden on human analysts, 
but not discount the need for them in the overall system. 

Perhaps one of the earliest insider threat detection systems 
that leveraged anomaly detection was in 2009 when Cuputo et 
al. introduced Elicit. Elicit generated user-specific datasets by 
collecting information from a user’s network traffic, digital 
object usage, and ancillary contextual information [4]. Their 



detector uses Bayesian networks to generate a threat score for a 
user’s daily activity based on the probability of the activity being 
malicious—or indicative of an insider threat. Elicit collected and 
processed network traffic to create per-user “information-use 
events” corresponding to activities in which a user read, wrote, 
or printed documents stored on an organization’s intranet [4]. 
Furthermore, Elicit gathered user events corresponding to 
browsing and searching. Elicit used additional contextual 
information including users’ job titles, departments, and office 
locations to derive more meaning from information-user events, 
allowing Elicit to identify suspicious activity when a user 
deleted or copied a document maintained by a different 
department, for example [4]. Caputo et al.’s Bayesian network 
“encodes the probabilities of occurrence for each activity for 
benign and malicious users” based on organizational norms, 
which were determined with the help of insider threat subject 
matter experts [4]. 

The Defense Advanced Research Projects Agency 
(DARPA) project Anomaly Detection at Multiple Scales 
(ADAMS) further leveraged anomalies in large datasets in order 
to detect insider threats in U.S. Government networks [5]. 
ADAMS used machine learning techniques to identify 
anomalous activity. One of ADAMS’s most significant 
contributions was identifying anomalies most typically 
generated by insider threats. The project confirmed through 
empirical data that, as expected, malicious insiders fetch more 
sensitive information than benign insiders, send more 
information outside of their organization, and are more active 
than benign insiders [5]. These observations paved the way for 
future generations of detectors by identifying and refining a set 
of confirmed insider threat indicators. 

Legg et al. [6] acknowledge the need for robust automation 
and diverse data sources to detect anomalies associated with 
insider threats. In addition to other records, their system harvests 
email, web, computer access, and physical building access logs 
to construct “daily observation profiles.” Their system assesses 
the profiles to generate alerts from both threshold-based 
anomalies and deviation-based anomalies. Legg et al. 
envisioned their system as part of a larger insider threat detection 
system where human analysts follow up with true and false 
positives, marking them as such to refine the parameters within 
the system and providing feedback to the system for continuous 
learning with a human in the loop.  

Like previous work, we envision temporal behavior on a 
network to be incorporated with other modalities, such as 
computer system logs, personnel data, and physical movement 
within an organization. The technical solution proposed in this 
work does not attempt to remove humans from the system; 
instead it attempts to complement other means of countering 
insider threats. Where our work differs from prior work is in the 
flexibility of defining behavioral norms. Whereas most prior 
work has considered anomalies in reference to a single profile 
(either per-user or population wide), our approach considers 
how an individual aligns with and transitions between a large 
number of baseline behaviors. This is accomplished by first 
determining up to several dozen behavioral norms within the 
network and then considering how well a user aligns with and 
transitions between those norms. 

III. FEATURE EXTRACTION AND ANOMALY DETECTION 
Our proposed system is broken up into three components: 

feature extraction, in which temporal measurements are made on 
the timing of packets; clustering, in which hosts are grouped 
based on behavioral similarities; and anomaly detection, in 
which hosts are scored based on their conformity to each cluster 
and movement between clusters over the observation period.  

A. Feature Extraction 
We describe two different feature sets: the first characterizes 

human behavior by measuring the volume of traffic as it occurs 
over each port and hour of the day; the second characterizes 
device behavior by measuring the distribution of packet inter-
arrival times, again broken down by port. Our approach 
characterizes the behavior of each user over the course of 1 day 
and assumes a one-to-one mapping between users and hosts on 
the network, i.e. we use IP address as a proxy for user identity. 
We consider only hosts for which IP address does not change 
over a multi-day observation period, including wired devices 
with static addresses and wired devices with DHCP-managed 
addresses that remain assigned to the same device. This 
simplifying assumption enables a per-user characterization of 
temporal behavior but does not address multi-user machines on 
the network, an item we leave for future work. 

1) Human Behavior 
In regard to recognizing human activity patterns, we 

consider activity over the duration of a single day. In order to 
capture patterns at a finer level, we also consider activity within 
single hours. These time ranges allow us to characterize when a 
user is active holistically over the course of a day; from this 
information we can infer typical and atypical patterns given 
sufficient time to observe a user. More specifically, we can 
reasonably infer a user’s typical circadian rhythm, e.g., when 
they log onto the network to start working, and when they take 
a break for lunch. 

We count the number of packets each user sends in each hour 
of a given day. In order to characterize a user’s activity type, we 
inspect the destination port of each packet sent by the user. We 
count packets sent to the same destination port during the same 
hour. Applying this measurement results in volumetric 
information broken down by destination port and hour of day. 
Instead of accounting for every possible destination port, we 
select and enumerate the most commonly used destination ports 
across the network. Hereafter, we refer to these as time-of-day 
(ToD) features, with an example shown in Fig. 1. 

 
Fig. 1. Example time-of-day features describing human behavior. 

2) Device Behavior 
To characterize device behavior, we aim to account for and 

differentiate between the potential high number of requests per 
time unit, driven by device activity, and the bursty network 
usage associated with humans [7]. The network services used as 
result of device activity will oftentimes in itself allow us to 
differentiate it from human activity. For example, connections 
to destination port 8014 for Symantec security updates are likely 



the result of automated device activity. Like humans, devices 
have preferred destination ports as a result of how they were 
configured.  

Instead of measuring volume over days and hours, as we did 
for the ToD features in Fig. 1, we measure volume within 
incremental time ranges for each considered port. That is, we 
count the number of packets transmitted by a device within a 
given time interval, measuring the time from when the previous 
packet was sent to when the next packet is sent. For example, if 
device A exhibits the activity demonstrated in Fig. 2, it would 
result in the binned feature vector also portrayed in Fig. 2. This 
histogram of packet interarrival times characterizes the rates at 
which upstream traffic is generated by a particular host. 

 
Fig. 2. Example transformation from packet time to time interval features. 

In order to account for how devices typically transmit 
packets in a regular and high frequency fashion, the time range 
bins have to be small—we assess on the order of microseconds. 
Adding the measurements that were a result of our destination 
examination, our device feature vectors appear in their final 
form, as shown in Fig. 3. These are hereafter referred to as time 
interval (TI) features. 

 
Fig. 3. Example time interval feature vectors describing device behavior. 

B. Clustering 
We cluster hosts using K-Means, which utilizes randomly 

selected centroids to group samples and alternatively 
recomputes cluster centroids and cluster membership until 
convergence. Features are computed for each day of activity 
from each host, i.e., both the ToD and TI features characterize 
behavior over a single day. The number of clusters is determined 
separately for each feature type based on the maximum 
silhouette score. Silhouette score measures the extent to which 
points are actually clustered by comparing distances between 
samples sharing the same cluster membership with distances 
between samples in the next closest cluster [9]. 

C. Anomaly Detection 
While analyzing how the clusters themselves are formed 

describes organizational behavioral trends (to include 
anomalies), we are primarily interested in host behavior relative 
to individual baselines and macro-level network utilization 
trends for the purpose of insider threat detection. Here, we must 
take a closer look at cluster membership and how members are 
clustered differently over time. Of note, without a labeled 
dataset, declaring that a network host is demonstrating 
anomalous behavior is ultimately a subjective call until later 
confirmed by a human analyst. After network hosts are clustered 
across the observation period, we must quantitatively describe 
why a host is behaving normally or abnormally. Foremost, we 

note the cluster in which a host appeared on each day over a 
given timeframe and from this, determine the likelihood of a 
host following a particular cluster sequence.  

The cluster each host belongs to on each day is determined 
by performing a K-Means clustering over the entire observation 
period. Fig. 4 shows an example of the cluster in which a host 
appeared on each day. From this, we calculate the number of 
unique clusters a host appears in and the number of times a host 
hopped between clusters. For example, Host C in Fig. 4 appears 
to be hopping between clusters; one might conclude they are 
behaving consistently due hopping between the same two 
clusters. Whereas in the case of Host D in Fig. 4, one might 
conclude this host is behaving abnormally due to membership in 
several different clusters. Denoting the number of hops and 
number of unique clusters, as shown in Fig. 4, describes these 
phenomena.  

 
Fig. 4. Example clustering of each host on each day of observation. 

We use the sample silhouette score as a metric to determine 
whether a host’s behavior on a given day was appropriately 
clustered. In Fig. 4 for example, Host C’s silhouette score on 
Feb. 8 (not shown) indicates it was likely appropriately placed 
in cluster 0, whereas Host D’s silhouette score on Feb. 8 
indicates it may have been inappropriately clustered in cluster 1 
[9]. 

So far, we have focused on how network hosts are clustered 
relative to themselves. While this is useful for establishing per-
host baselines, we need to address how hosts are clustered over 
time relative to other network hosts. For example, in isolation it 
may seem peculiar if a host appears in cluster 0 for four 
consecutive days, but then suddenly changes on the fifth day to 
cluster 6. However, this could be viewed as normal relative to 
the entire population if we observe a large proportion of the 
population also transition to cluster 6 on the same day. Such a 
massive distribution shift of hosts among each respective cluster 
is likely due to an outside factor, e.g., a mandatory online 
training event in which most users must participate or a shift in 
business working hours, and not an isolated change in host 
behavior. While understanding the specifics of such factors or 
events is not critical for anomaly detection, it is important to 
capture how individual hosts react to the imposition of these 
outside factors or events. Using our previous example, if a host 
does not shift to cluster 6, this could be cause for further 
investigation. 

In order to reflect cluster distribution changes, and the 
significance of each host’s movement between clusters across 
several days, we use a Markov chain to compute the probability 
of a host’s particular cluster sequence. Over the observation 
period, a Markov chain captures the probabilities of all possible 
sequences of state changes; in our case each state is a cluster. 
We consider the union of all possible clusters in a given period 
and note the percentage of hosts whom transitioned from one 
state to another. This allows us to measure the likelihood—or 
the suspiciousness—of a host’s cluster sequence. Fig. 5 shows 
an example in which two hosts are clustered over three 



consecutive days. In this example, the likelihood of Host A’s 
sequence (0 à 0 à 0) is greater than Host B (0 à 1 à 1). 

 

 
Fig. 5. Example Markov chain and probabilities of cluster transitions. 

This approach enables us to examine how a host is behaving 
relative to historical host trends and overall population trends. 
Examining the clusters themselves allows us to explain why a 
host or group of hosts is clustered in a given manner by 
describing the typical behavior demonstrated by the members of 
a given cluster. Given a sufficient observation period, our 
methodology allows us to derive both host-specific behavior 
baselines and the suspiciousness of a host’s behavior relative to 
the population. 

IV. RESULTS 

A. Data collection 
We collected network traffic over 6 consecutive days from 

the core switch of a medium-sized university (3k students, 1k 
faculty/staff). Only the first 70 bytes of each packet were 
captured, as the features we defined are determined entirely by 
packet headers. The data collection resulted in approximately 
1TB per day. Table 1 summarizes the number of active hosts 
over the contiguous 6-day collect: “DHCP Hosts” and “Static 
Hosts” show the number of active DHCP assigned or statically 
assigned IP addresses, respectively. 

TABLE 1. DATA COLLECTION OVERVIEW 

Date 8 Feb 9 Feb 10 Feb 11 Feb 12 Feb 13 Feb 
Day Sat. Sun. Mon. Tues. Wed. Thurs. 
DHCP 4,435 4,435 7,423 7,631 7,497 7,327 
Static 479 498 490 484 519 526 

 
The mix of week and weekend days allows us to infer 

network-wide and host-specific trends demonstrated on working 
and non-working days. Furthermore, 6 consecutive days of 
observation (8 through 13 Feb) allows the formation of at least 
partially representative host baselines. However, the lack of 
repeated same-day observations does not allow us to compare 
host-specific behavior demonstrated on specific days of the 
week. The system observed 8,838 unique IP addresses over the 
6-day observation period; 537 were hosts with statically 
assigned addresses; 3,305 were hosts with DHCP wireless 
addresses; and 4,996 hosts had DHCP wired addresses. Fig. 6 
shows a histogram counting the number of days each host was 
present on the network. Most wired DHCP and static hosts were 

active for all 6 days of the observation period, while most 
wireless hosts were active for only 4 days. Note that the 
observation period includes 4 business days and 2 non-business 
days (Saturday, Sunday), which suggests most wireless users do 
not visit campus over the weekend.  

 

  
Fig. 6. Number of days a host was active, broken down by address type. 

 

B. Clustering Results 
To start, we consider dimensionality reductions of time-

based and port-based features to visually assess the separability 
of clusters within the dataset. There are 18 subnets within the 
network, some corresponding to building or department and 
some for designated devices, e.g., IP phones, printers, AWS, and 
administrative machines each have their own subnet. We color-
code hosts after a t-distributed stochastic neighbor embedding 
(t-SNE), shown in Fig. 7. From this, we can observe that 
temporal behavior is largely different between devices from 
different subnets, and that some of the larger subnets are also 
separated into distinct clusters. 

We use the silhouette score to determine the appropriate 
number of clusters separately for each feature type. Fig. 8 shows 
the average silhouette scores ranging from 4 to 150 clusters. The 
ToD features achieve a maximum score at 65 clusters, and the 
TI features at 27 clusters. 

 

 

 



Fig. 7. t-SNE projections for hour (left) and port (right) features. Color 
denotes the subnet each host resides in. 

 
Fig. 8. Average silhouette score vs number of clusters for each feature type. 

With the selected number of clusters for the time-of-day 
feature vectors being almost double the that was selected for the 
time interval feature vectors (65 for ToD vs 27 for TI), it is 
expected that the time-of-day hosts are more likely to occupy a 
higher number of clusters throughout the period. As shown in 
Fig. 9 (top left), the time-of-day hosts were most likely to be 
occupy 6 distinct clusters throughout the observation period, 
whereas time interval hosts were more likely to occupy 1 distinct 
cluster throughout the observation period. 

 

Fig. 9. CDFs of: clusters occupied (top left); cluster hops (top right); silhouette 
scores (bottom left) and Markov probabilities (bottom right). For ToD features 
the number of clusters k=65; for TI features, k=27. 

Fig. 9 (top right) shows time-of-day hosts were most likely 
to change their cluster membership (cluster hop) the maximum 
amount of times (5 transitions for a period of 6 days), whereas 
time interval hosts were most likely to never hop clusters 
throughout the observation period. In isolation, the number of 
unique clusters a host occupies or the number of times a host 
changes cluster membership is nearly meaningless for the 
purpose of insider threat detection. A host’s corresponding 
Markov chain probability and mean silhouette score computed 
over the observation period provide context which allows us to 
determine the significance of host cluster movement. For 
example, if not rationalized by population-relative metrics 

which characterize the population’s behavior (in our case, 
Markov chain probabilities), a host changing cluster 
membership could be significant. Host-relative metrics could 
also help explain cluster movement. In this case, having host-
unique baselines could help justify cluster movement if the 
movement is consistent with a host’s past behavior. However, 
we assess our 6-day observation period is insufficient for 
developing host-specific behavior baselines. The lack of 
repeated same-day observations (i.e., multiple Monday 
observations) in our data and the data’s brevity hinder our ability 
to build host-specific behavior baselines, an item we leave for 
future work. As a result, we will rely on the context provided by 
Markov chain probabilities and mean silhouette scores to drive 
the identification of behavioral anomalies. 

Fig. 9 (bottom) shows the cumulative distributions of mean 
silhouette scores and Markov chain probabilities. Our system 
selects the hosts with the lowest scores (1%) as potentially 
anomalous and flags them for further investigation. The highest-
scoring time-of-day hosts (in theory, demonstrating the least 
anomalous behavior) have a mean silhouette score of 0.3051 and 
a Markov chain probability of 9.64x10-7, respectively. The 
corresponding time interval hosts have a mean silhouette score 
of 0.1962 and a Markov chain probability of 5.17x10-8, 
respectively.  

C. Case studies 
In the following case studies, we select and examine hosts 

the system has flagged as potentially anomalous. Specifically, 
we select one flagged host from each feature vector type for 
further investigation in an attempt to determine if they are indeed 
demonstrating anomalous behavior. This process follows a 
similar investigation as would be performed by a human analyst. 
The silhouette score and Markov chain probability are the first 
indicators that a host could be behaving anomalously relative to 
the population of network hosts. We augment these with a 
variety of techniques in the following case studies in order to 
provide further evidence that a flagged host is deviating from 
behavioral norms or not. Our techniques include host subnet 
identification and examination, the characterization of 
movement in and/or between clusters, and observing the raw 
network traffic generated by a host. We also consider per-hour 
activity and port usage for the time-of-day hosts and examine 
other characteristics as they appear relevant to an assessment of 
the host in question. 

1) Time-of-Day Features – Host A 
Host A was flagged by the system due to its low Markov 

chain probability. As shown in Fig. 10, Host A earned the lowest 
Markov chain probability and a mean silhouette score of 0.4466, 
which is at the 14th percentile of all hosts flagged for low 
Markov chain probabilities. Of note, the next lowest Markov 
chain probability was 1.08x10-9 — significantly higher than 
Host A’s. 

 
Fig. 10. Host A summary of activity, clusters occupied, silhouette score (SS) 
and Markov probability. 



Examining Host A’s cluster movement helps explain its low 
Markov chain probability. However, while other hosts had 5 
hops and occupied 6 unique clusters, none had a lower Markov 
chain probability. From this we can conclude Host A made 
exceedingly unlikely cluster transitions across the observation 
period. Fig. 11 shows Host A’s traffic volume patterns over each 
day, which are contradictory to the population. With the 
exception of Feb. 8 to 9 and Feb. 12 to 13, Host A’s activity 
increases when the population mean decreases and vice versa. 
Particularly noticeable is Host A’s divergence from the 
population on Feb. 9 and 10 where on Feb. 10 Host A’s activity 
differs from the population mean by approximately 20,000 
packets. 

   
Fig. 11. Host A’s traffic volume broken down by day (left) and hour/port (right) 
compared to the population. 

While Fig. 11 (left) show’s Host A’s volumetric 
inconsistencies relative to the population, we must address the 
other metrics accounted for in the time-of-day features. Host A 
also appears to be behaving anomalously based on time metrics. 
Fig. 11 (right) shows Host A’s per-hour activity across the entire 
observation period compared to the population mean. There are 
a few spikes in activity from Host A during hours 0, 1, 7, and 
11. However, perhaps most striking is Host A’s divergent 
activity between hours 17 and 21 — one of the population’s 
lowest activity periods 

Using the information gleaned from Fig. 11, we can examine 
Host A’s activity on Feb. 10 during hours 17 through 21 
compared to the population mean during the same hours. As 
shown in Fig. 12, (showing differences in per-hour activity 
between Feb. 9 and Feb. 10) the activity exhibited by Host A 
during hours 17 through 21 does significantly differ from the 
population mean. However, Fig. 12 also shows stark differences 
during other hours on Feb. 9 and 10. Furthermore, Fig. 12 
reveals potential intra-host anomalies in Host A’s behavior. 
Without a host-specific behavioral baseline to refer to with 
repeated same-day observations, we cannot claim this is a host-
relative behavioral anomaly; despite this, Host A’s significant 
decrease in traffic from hours 8 through 17 followed by a sudden 
spike in traffic volume could be cause for further investigation. 

 

 
Fig. 12. Host A’s hourly traffic volume compared to the population. 

Host A divergences concerning port usage are less stark. 
This reveals a possible deficiency in our methodology given the 
previously mentioned anomalies. Specifically, we enumerated 
the 12 most commonly used ports, binning uncommon ports into 
a bulky “other” column.  Expanding the “other” ports into 
separate hour/port columns could have resulted in more telling 
results. However, a closer examination of Host A’s most 
frequently utilized ports—binned “other” ports and 445—
compared to the population indicates that Host A uses port 445 
significantly more. 

We have shown that Host A, at times, demonstrated 
anomalous behavior relative to the population. To account for 
the diversity of device types (servers, printers, phones, etc.) in 
the population, we also consider Host A relative to other hosts 
in its subnet. We observed activity from at least 460 other hosts 
in Host A’s subnet; 12 of the 40 hosts flagged by the system for 
low Markov chain probabilities were members of Host A’s 
subnet. Based on this information, it is possible an unusual 
subnet-wide event prompted the subnet to behave unusually 
during the observation period. Fig. 13 helps explain Host A’s 
anomalous activity, showing synchronized activity changes with 
the exception of Feb. 12 to 13. Fig. 13 also shows correlated 
changes in activity on an hourly basis between Host A and the 
subnet mean. The similar activity shifts between consecutive 
hours and consecutive days could indicate a shared pattern or 
event that influences activities over the entire subnet, including 
Host A. 

 

  
Fig. 13. Host A’s hourly traffic voluem compared to it’s subnet. 

 

The preceding results do not explain the greater volume 
demonstrated by Host A compared to the subnet mean—
particularly between hours 17 and 21. Also, Host A has the 
resoundingly lowest Markov chain probability and has a mean 
silhouette score in the 26th percentile of all subnet hosts. Host 
A’s port usage could help explain this, as well as draw a 
distinction between the subnet’s behavior. As shown in Fig. 14, 
while port 445 and port 443 usage are similar, Host A has 
significantly more “other” port activity, and less port 22 activity.  



 
Fig. 14. Host A’s port activity compared to the subnet. 

We have shown that Host A’s behavior is significantly 
different from the population of network hosts during the 
observation period. Activity levels (based on volume) between 
Host A and the population contradict one another on a daily and 
hourly basis. We have also shown that while Host A and its 
subnet have mostly corresponding daily and hourly activity 
patterns, Host A’s port utilization and volume is significantly 
different from its subnet. 

2) Time Interval Features – Host B 
Host B was flagged by the system due to its low mean 

silhouette score. Host B has the lowest mean silhouette score of 
all the flagged time interval hosts. As seen in Fig. 15, Host B 
appeared in the same cluster on all days in the observation 
period, resulting in zero cluster hops. Despite Host B’s lack of 
cluster movement, its Markov chain probability appears below 
the mean (0.4230) of other hosts that had zero cluster hops. Of 
note, Host B consistently appears in a large cluster that does not 
appear to be very well defined. For additional context, we were 
provided information that Host B is in a subnet used for energy 
management controllers associated with heating, ventilation, 
and air conditioning on campus. We observed activity from 57 
other hosts in this subnet. These 57 hosts appear in the same 
cluster more than any other cluster. 

 
Fig. 15. Host B summary of activity, clusters occupied, silhouette score (SS) 
and Markov probability. 

Given this context and the unique nature of Host B, we might 
expect its behavior to be vastly different from the behavior of 
the population. Furthermore, given the cluster’s below average 
definition, we should expect more variability in behavior from 
hosts in that cluster. For these reasons, it is unlikely that 
comparisons between Host B and the population, or Host B and 
other hosts in the cluster will be useful from an insider threat 
perspective. However, this likely indicates that Host B is indeed 
demonstrating anomalous behavior with respect to the 
population and the cluster. 

As suspected, Host B’s behavior significantly differs from 
the population. Fig. 16 shows Host B is significantly less active 
than the population average. It also shows that the top-5 packet 
time intervals do not intersect with those of the population. Of 
note, Host B’s top-5 packet time intervals are all larger than the 
population’s top-5 intervals. Regarding port utilization, Host B 
exclusively uses ports outside of the top ports we enumerated. 
We find that the average host in the same cluster is more similar 
to the population’s average host than Host B—demonstrating a 

similar activity level and sharing the same top-2 packet time 
intervals as the population. 

While not accounted for in the time-interval feature vectors, 
we are able to find similarities in the hourly activity patterns 
between Host B and the population. As already shown, the 
activity levels relative to volume are significantly different, but 
Host B and the population are both least active during hour 18 
as shown in Fig. 17. These results suggest that time-of-day 
behavior alone may not be sufficient to discover anomalous 
temporal behavior, with characterization of time interval 
densities also playing an important role. 

 
Fig. 16. Host B top-5 time intervals compared to the population. 

 
Fig. 17. Host B hourly activity compared to the population. 

Despite some similarities in Host B’s per-hour activity, it is 
clear that Host B demonstrated anomalous behavior relative to 
the population. And based on its mean silhouette score, it is also 
an outlier in respect to its cluster. However, in this case, Host 
B’s identity as an energy management controller partly explains 
why it is behaving differently and why it was subsequently 
flagged by our system. Given it its unique nature, we would have 
to rely on direct comparisons with other subnet members or 
itself (host-relative) to determine if it is perhaps an insider threat. 

Fig. 18 helps us understand the differences in behavior from 
Feb. 8 to 9. Considering the otherwise low activity levels on the 
9th, the subnet’s mean per-hour activity spikes during hours 10 
and 14. While this could be cause to investigate other hosts in 
the subnet, it does not show Host B is behaving anomalously 
relative to its subnet.  

 
Fig. 18. Host B hourly traffic volume on Feb. 8 and 9. 



Like Host A, we have shown that Host B’s behavior is 
significantly different from the population of network hosts 
during the observation period. Comparing Host B’s behavior 
with the behavior of other hosts in its cluster partly explains its 
low mean silhouette score and why it was flagged by the system. 
Host B’s unique role in the network as an energy management 
controller explains its anomalous behavior relative to the 
population and its cluster. However, we identified several 
behavior differences between Host B and its subnet. First, Host 
B consistently demonstrates less per-day and per-hour activity. 
And second, Host B communicates with different interevent 
periods. In the processes of examining Host B we found a spike 
in activity from members of Host B’s subnet on Feb. 9 
(Sunday)—a day where we would generally expect less activity 
relative to other days. 

Host B is indeed behaving anomalously relative to the 
population and perhaps relative to its subnet. Without additional 
operational context and information, we cannot conclude Host 
B is a strong candidate to investigate further as a possible insider 
threat. Given Host B uniqueness, comparisons with the 
population are likely less meaningful. A host-relative approach 
for identifying behavioral anomalies would likely be more 
effective for Host B. 

V. CONCLUSION 
As demonstrated in the case studies, each feature type 

captures different aspects of host behavior, with ToD features 
aiming to characterize user activities with coarse granularity and 
TI features describing device behavior at a finer scale. As a 
result, we were able to recognize different behavior anomalies 
based on feature vector type. Anomalies based on time-of-day 
features are more comprehensive and intuitive for a human 
analyst, compared to time interval features, which are designed 
for the detection of device (automated) behavioral anomalies at 
a granular level. Given the mix of human and automated activity 
on many hosts (making it difficult to separate the two), we 
believe this feature vector type would be beneficial for host 
fingerprinting and the subsequent development of host-relative 
baselines, which this research largely did not address. 

The case studies did not fully enumerate the advantages and 
disadvantages of using Markov chain probabilities versus 
silhouette scores for behavioral anomaly detection. However, 
the case studies did point out one important point for 
consideration: hosts flagged for having the lowest silhouette 
scores had very little cluster movement—most occupied 1 
unique cluster and had 0 hops. Additionally, they usually were 
consistently clustered day-to-day on the periphery of a given 
cluster. This explains why (as was the case for Host B), the hosts 
flagged for their low silhouette scores were unique relative to 
the population. This is favorable for behavioral anomaly 
detection. However, we suspect these hosts demonstrated this 
consistent abnormal behavior because of their unique roles on 
the network and not because they were insider threats. Host-
relative metrics could be used to evaluate these hosts for insider 
threat activity. 

While mean silhouette scores appeared to be more effective 
in detecting repeated abnormal population-relative behavior, the 
Markov chain probabilities appeared to be effective in detecting 
behavioral anomalies as a result of dynamic or new emerging 
behavior. As seen with Host A, the Markov chain was useful in 
detecting changes in behavior that were different from the 
population (i.e., “spikes”). If we presume behavioral anomalies 
as a result of behavior change are indicative of insider threats, 
the Markov chain probabilities are likely more useful for our 
purposes. 

In production, a network is likely to experience changes over 
time that could significantly alter what is considered normal 
behavior. This may include, for example, organizational 
changes or the introduction of a new tool or service. Because 
clusters have been determined a priori over the entire 
observation period, a production system would need to adapt to 
dynamic network conditions to avoid concept drift, for example 
by periodically updating cluster centers or limiting cluster 
analysis to shorter time periods. 

The analysis of network traffic will continue to play an 
important role in insider threat detection, increasingly so for 
virtual organizations [10]. Future work will focus on the 
establishment of host-specific baselines over longer periods of 
observation. The separation of network traffic induced by 
human and automated device processes also remains a 
significant challenge, which would enable modeling each 
component separately. 
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